

Bridging the Gap between Formal and Informal Science Learning: PBL & Surrounded by Science

Dr. Sherman Rosenfeld Department of Science Teaching Weizmann Institute of Science Rehovot, Israel 1. Project-Based Learning (PBL) in Science and Technology Summarizing 26-years of PBL in Israel and recommendations about how to scale up

Outline of Talk

2. Surrounded by Science An EU Project

> Conducting research about how iSTEM activities can contribute to school science and vice versa

1. PBL in STEM The Israeli Experience

1993 - 2019 (26 years)

Parents as project mentors

Professional Development of STEM teachers

Development of materials, guides and digital tools

PBL school networks – HiTechHigh Community

Educational research: case studies and longitudinal

500+ parents

3,000+ teachers

50,000+ students

Schools in Jewish, Arab and Druze communities in Israel

Lessons Learned: How can PBL help advance STEM education?

PBL can: provide real-world connections increase teacher and student motivation integrate STE(A)M disciplines & knowledge promote 21st Century Skills develop students ready for the "dynamic, knowledge-based economy" (from the Lisbon Strategy)

PBL Promotes 21st Century Skills

Communication Collaboration Creativity Critical thinking Cultural literacy Curiosity

Challenges of PBL

For learners: ambiguity & open-endedness, research skills, collaboration skills, self-regulation, motivation, overcoming setbacks and obstacles, time management, self-assessment, etc.

For teachers: content coverage, high-stakes testing, facilitating student autonomy, facilitating skill development, managing group dynamics (e.g., social loafing), access to resources, managing diverse student needs, time management, authentic assessment, etc.

For administrators: providing long-term teacher professional development, shifting the school culture, curriculum alignment, resource allocation, managing logistics, community and parental support, scaling up and sustainability, establishing metrics, assessment and accountability, etc.

Scaling Up PBL

"What would it take to scale up PBL and integrate it into educational systems?"

men = 384. + n

Chrysa Mitta Director, Lisbon Council

Kalanswa Arab Village: "The Water We Drink"

140

Lisbon Council, May 22, 2023

Professional Development of Teachers

In this project, 26 teachers from grades 1 to 12 participated in a year-long PD workshop . For the first half of the year, they engaged in their own PBL projects about the topic, on their own levels, and discussed possible student difficulties and pedagogical approaches to address them. In the second half of the workshop, they applied this knowledge to their students, resulting in a projects fair with, by and for over 500 students from the Kalanswa, and other members of the community. In the above photo, the teachers are exploring the Alexander River, located bases to the sumple.

Lisbon Council, May 22, 2023

Evolving Model of Professional Development

Teacher as Learner in the Workshop Teacher as Teacher in the Classroom Teacher as Innovator in the School

Rosenfeld, S. Scherz, Z. Orion, N. and Eylon, B. (1997). "An Evolving Model for Long-term Teacher Development." In: Vosniadou, S. et al. <u>Conference Proceedings</u> for the 7th European Conference for Research on Learning and Instruction.

University of Athens, Greece. Rethinking Science Education in Europe,

Lisbon Council, May 22, 2023

	FOCAL AREAS OF EMPHASIS					
	I. Self	II. Classroom	III. School/System			
	Teacher as an active	Teacher as a reflective	Teacher as an adaptive			
	learner	teacher	innovator			
	Disequilibrium:	Disequilibrium:	Disequilibrium:			
	Confusion and	Confusion and	Confusion and			
	Excitement (What are	Excitement (What is my	Excitement (The			
	the goals of this	role in the class? To	curriculum is going to			
	inservice anyway?)	pour out knowledge or	change but what IS the			
		help students learn?)	relationship between			
			science and technology?)			
	Frustration (I don't	Frustration (How can I	Frustration (How can I			
	know enough. I'm 20	implement the changes	implement changes			
	years behind. How can I	outside of this inservice?	without the supervisor's			
H	teach what I don't	The conditions aren't	agreement and support, in			
S.	know?)	right to support the	terms of teaching hours,			
OUEN		change in my classroom)	money, an inflexible			
			curriculum?)			
E.	Recognition of Need to	Recognition of Need to	Recognition of Need to			
S	Change (I need to	Change (We need to get	Change (1 he school			
H	change, to learn more	the relevant resources	system needs to change.			
IA	dna in aijjerent ways. 1 dau't have te haav	ana teach the relevant	Someone has to talk with			
E.	aon I have to know	skius.)	togehore, and the			
E.	everyining?)		supervisors. The			
E			curriculum needs to be			
Q			chemand)			
Ξ	Desire to Change	Desire to Change	Desire to Change (We			
N.	(Iwant to change)	(Iwant to change my	want to change the			
ā	(a name to enangel)	classroom teaching.)	schools system. We want			
-			to talk with the principal.			
6			the other teachers, and the			
Z			supervisors. We want to			
N			change the curriculum.)			
8	Will to Change	Will to Change	Will to Change			
-	(I believe that I can	(I believe I can change	(We believe we can			
	change.)	my classroom teaching.)	change the school system.			
			We believe we change the			
			curriculum.)			
	Fulfillment	Fulfillment	Fulfillment (We changed			
	(Ichanged. I know I can	(Ichanged my	the school system by			
	change as a person.)	classroom teaching. I	involving the principal,			
		know I can change as a	the other teachers, and the			
		<i>classroom teacher</i> .) _{Rethi}	h ₭///grሜሪሳën.Ve Education			
			parficipated in changing Lisbon Council, May 22,			

The Evolving Model of Professional Development (PD), is based on an empirical study. The model focuses on three focal areas of emphasis for teachers that all share a common developmental sequence. The key for teachers moving successfully through this sequence is adequate support from the PD leaders and teacher colleagues.

School-Academia Connection

PBL Guides and Digital Resources: Grades 7-12

School Networks

Amal School Network (2012-9)

הערכת הניסוי של רשת עמל

קהיל"ה 21 קהילות הנעה, יצירה, לימוד והצלחה במאה ה-21

דר' שרמן רוזנפלד ורד פרג דר' צבי לירז

יולי 2018

/////

What is Quality PBL? 1	0 Essential Aspects			
Significant Content				
Real-World Connection				
Need to Know				
Driving Question				
In-Depth Inquiry				
Authentic Products				
21 st -Century Skills				
Student Voice and Choice				
Public Audience				
Revision and Reflection				

Lessons Learned: How to scale up and integrate PBL into education systems?

In this section of the talk, several approaches were suggested:

- Long-term Professional Development (PD), based on the Evolving Model of PD
- School-Academia Partnerships
- PBL Guides & Digital Resources
- School Networks Communities of Practice with principals, pedagogical coordinators, teachers, and students
- Focus on Quality PBL

2. Surrounded by Science An EU project to bridge the gap

The Guiding Research Questions

- How can informal STEM (iSTEM) learning activities contribute to the development of science learning in formal science settings, and vice versa?
- Three sub-questions will also be addressed:
- a. What are the <u>outcomes</u> of these iSTEM activities and programmes in terms of science proficiency?
- b. What <u>design features</u> of the iSTEM activities and programmes foster science proficiency?
- c. How might the iSTEM activities be used to <u>bridge</u> between formal and informal STEM learning?

Learning Contexts

The 6 Strands of Science Proficiency

National Research Council (NRC) 2007, 2009

Strand	NRC Description	Research Concepts
1. Being Interested in and Excited by Science	Experience excitement, interest, and motivation to learn about phenomena in the natural and physical world.	Interest Engagement
2. Understanding Scientific Content and Knowledge	Come to generate, understand, remember, and use concepts, explanations, arguments, models, and facts related to science.	Factual knowledge Conceptual knowledge Procedural knowledge
3. Engaging in Scientific Reasoning	Manipulate, test, explore, predict, question, observe, and make sense of the natural and physical world.	Understanding explanations and arguments
4. Reflecting on Science	Reflect on science as a way of knowing; on processes, concepts, and institutions of science; and on their own process of learning about phenomena.	Nature of Science (NOS): understanding how science knowledge develops
5. Using the Tools and Language of Science	Participate in scientific activities and learning practices with others, using scientific language and tools.	Scientific language Scientific tools Authentic science
6. Identifying with the Scientific Enterprise	Think about themselves as science learners and develop an identity as someone who knows about, uses, and sometimes contributes to science.	Science identity Self-perception in science

The Research Perspectives

- 1. Context-oriented perspective. Insights regarding the characteristics that trigger attention and interaction in the different contexts, based on *tracking* the behaviour of the users.
- 2. Person-in-context perspective. Insights regarding the interaction and experiences of users, based on short questionnaires related to their experiences, their appreciation and accessibility of the activity, perceived learning, and motivation to participate in similar and other science activities.
- **3.** Person-oriented perspective . Insights about the outcomes that iSTEM learning activities have regarding the six strands of science proficiency, based on questionnaires and interviews (e.g., regarding factual, conceptual and procedural knowledge).
- **4. Everyday-life perspective.** Insights based on the everyday interests and engagement of users in science activities (e.g., watching a documentary, reading a science magazine, or visiting a science-related website), based on *self-report diaries*.

Research Tools

	Context-Oriented	Person-in-Context	Person-Oriented
		Oriented	
1. Sparking Interest	1. Tracking frequency	Likert-scale and open-	Adapted
and Excitement	and duration.	ended questions:	Questionnaire:
	2. Participant behavior	"During this activity,	Linnenbrink-Garcia, et
	3. Participant	whatIfound	al. (2010)
	Discussions	interesting was"	
2. Understanding		Likert-scale and open-	1. Questions to test
Scientific Content		ended questions:	for specific factual,
and Knowledge		"During this activity, I	conceptual and
		learned that"	procedural
			knowledge.
			2. Visual
			representation, e.g.,
			concept maps
3. Engaging in		Likert-scale and open-	1. Questions to test
Scientific Reasoning		ended questions:	for participants being
		"During this activity, I	able to make sense of
		could explain that	natural phenomena
			2. Visual
			representation, e.g.,
A Reflecting on		Likert-scale and onen-	1 Nature of Science
Science (NOS =		ended questions:	Questionnaire
Nature of Science)		During this activity. I	(Conley, et al., 2004)
,		understood how	2. Visual
		scientists found out	representation, e.g.,
		that"	concept maps
5. Using the Tools		1. Likert-scale and	The Perceived
and Language of		open-ended questions:	Authentic Science
Science		"During this activity, I	Questionnaire (Boll,
		understood how	2013)
		scientists work;,,,"	
		2. Analysis of	
		participant discussions	
		(with use of language	
Children in the		analyzer app)	
6.identifying with		Likert-scale and open-	Science identity
Enterprise		"During this activity !	instruments (Hazari,
citterprise		caw mycelf ac a	Avraamidou 2022
		science person "	Avidaiiiu00, 2022)
		science person.	

Digital Toolbox

Bridging the Gap between Formal and Informal Science Learning

In this presentation, two approaches to bridging the gap have been presented:

1. Bringing aspects of informal science learning (such as freechoice learning, student interest and science identity) into formal science learning via PBL, and

2. Studying the outcomes of informal learning activities and programs, in order to identify the design features that make a difference, as a basis for bridging this gap.

Amplifying Informal Science Learning

Rethinking Research, Design, and Engagement

Edited by Judy Diamond and Sherman Rosenfeld

Scheduled for publication in June 2023, the book presents the state of the art in the field of Informal Science Learning, with 34 essays.

The book's page on the publisher's website

References

Bridging the Gap

Hofstein, A. and Rosenfeld, S. (1996). "Bridging the Gap between Formal and Informal Science Learning." *Studies in Science Education*, 28, 87-112.

Fallik, O., Rosenfeld, S. and Eylon, B. (2013). School and Out-of-School Science: A Model for Bridging the Gap. *Studies in Science Education*, 49:1, 69-91.

PBL

Fallik, O., Eylon, B-S and Rosenfeld, S. (2008). Motivating Teachers to Enact Free-Choice Project-Based Learning: Effects of a Professional Development Model. *Journal of Science Teachers*, 19 (6): 565-591.

PBLWorks (Buck Institute of Education) <u>https://www.pblworks.org/</u> HiTechHi Schools <u>https://www.hightechhigh.org/student-work/projects/</u>

Surrounded by Science

Project website: <u>https://surroundedby.science/</u>

Acknowledgements

The work described above would not have been possible without the collaboration of numerous colleagues, teachers, students, parents and institutions. I would like to acknowledge each of them especially the following:

For the PBL work: Bob Pearlman and the Autodesk Foundation; staff and parents from the Tachkimoni Elementary School; Yahavit Loria, Uri Marchaim and the staff of "The Golden Way" in Migal, Kiryat Shmona; Orna Fallik, Zehava Scherz, Bat-Sheva Eylon and the PD staff of the Weizmann Institute of Science in Rehovot; Roni Lev and the teachers from Kalanswa; Ronit Ashkenazi and the staff of the Amal Schools Network; Yaakov Shneider, Zvi Liraz, Ilana Dror and colleagues from the Israeli Friends of the HiTechHi Community.

Surrounded by Science is an EU-funded project coordinated by the University of Twente in the Netherlands and partnered by seven other organisations from Greece (Ellinogermaniki Agogi), France (The European Physical Society), Portugal (Nuclio), Italy (Città della Scienza) Belgium (The Lisbon Council), Israel (Weizmann Institute of Science) and Norway (Norwegian University of Science and Technology).

Many thanks for listening!

Sherman

shermrosenfeld@gmail.com

https://www.shermanrosenfeld.com/

